FLUIDOS @MetaOS Workshop

Flexible, scalable, secure, and decentralized Operating System

F. Risso, Politecnico di Torino (Italy)
Many silos

IoT/Edge

Cloud
FLUIDOS is all about transparency

The FLUIDOS computing continuum defines *multiple, dynamic, secure virtual spaces*, spanning across multiple *technological domains* and *administrative boundaries*, with *deployment transparency, communication transparency*, and *resource transparency*.

a) Current silos-based computing continuum

b) FLUIDOS computing continuum
FLUIDOS technological pillars

- Node and Protocols
- Meta-orchestrator
- Security
- Energy
- Open-source

Use cases
(1) FLUIDOS node and Protocols

FLUIDOS Node

- Privacy and Security Manager
- Local Resource Manager
- Trust Security Agent

REAR Controller
- Gateway
- Discovery Manager
- Contract Manager
- Solv Controller
- Allocation Controller
- Peering Candidates
- Available Resources

Remote Telemetry Service

Local Telemetry Service

Ratings and Metrics

RESource Advertisement and Reservation protocol (REAR)

CONSUMER

REMOTE FLAVOR

LIST FLAVORS

CONSUMER

RESERVATION

RESERVE FLAVOR (FLAVOR ID)

OK/KO + TRANSACTION ID + TTP

CONSUMER

PURCHASE

PURCHASE FLAVOR (FLAVOR ID)

OK/KO

CONSUMER

K8s clusters
- VMs
- Software services
- Sensors
- Data

Provider

LIQO

Kubectl FLUIDOS Plugin

Meta Orchestrator
- MSPL Orchestrator
- Label Orchestrator
(2) Meta orchestrator

Service Handler API
- Native K8S
- Medium-level security policy language (MSPL)
- Model-based K8S
- More!

Node Meta-orchestrator
- MSPL-based Meta-orchestrator
- Model-based Meta-orchestrator

Available Resources
- REAR Manager

“local” K8S scheduler via standard deployment

“Local” FLUIDOS node

Intents
(3) Security

FLUIDOS Phases

- Discovery
 - Services against Infrastructure
 - Services against Services
 - Infrastructure against Services

- Resource Acquisition
 - Authentication and Authorisation
 - FLUIDOS nodes
 - IoT devices & FLUIDOS nodes
 - Intent-based Border Protection
 - Trustworthy image repositories
 - Node security policies enforcement
 - Threat Detection
 - Cloud-native Cyber Deception and Security Orchestration

- Usage
 - Attestation
 - Workload Confidentiality

S: Software tool
M: Method (Algorithm, Protocol, Policy, etc.)
(4) Energy

- **Energy efficiency**
 - Reduce operational carbon
 - Use cleaner electricity
 - Load shifting (Computing)
 - Spatial load shifting
 - Electricity mix
 - Temporal load shifting
 - Load predictions
 - Energy predictions
 - Reduce embodied carbon
 - Less infrastructure
 - Increase utilization rate
 - Data centres
 - Edge computing
 - IoT / deep edge

- Load shifting
 - Load predictions
 - Energy predictions

- Effective infrastructure
(5) Open-source

Kubernetes (K8s, K3s, etc), Liqo, KubeEdge

https://github.com/fluidos-project
Use cases

Smart Viticulture
Seamless deployment of services at device/edge/cloud level, with reduced devops overhead

Intelligent Power Grid
Increased resiliency and survivability properties of critical ICT services for smart grids

Robotics Logistic
Improved battery usage and decreased hardware cost through processing offloading