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1 Motivation

Cloud applications are distributed applications consisting of a set of communicating components that can be
software modules, or microservices provided by a set of containers, or stateless functions and third-party software
services invoked as needed. By definition, computing is about transforming input data to output data, and the
components receives data from sensors or other components, and forwards the results of the computations to
downstream components. Application management is interesting for persistent applications that are supposed to
run continuously as long as there is more data to process. This means that during the application’s lifetime it will
experience varying demands and a changing execution context defined by events external to the application and
beyond its control.

The goal of the automatic application management is to react to these changes and make rational choices
regarding its deployment to maximize the application owner’s utility [1]. Application management in a pure
Cloud computing setting is simplified by the promise of infinite elasticity of the Cloud resources needed by
the application. It is always possible to give the application the resources needed for it to maximise its utility.
However, this is not possible for applications using computational resources in the network and closer to the
sources of the data being acquired and processed by the application. These resources are not abundant, and
geographical location may play a role making it hard or impossible to move the application components to more
available or better performing resources.

Finally, the Cloud computing paradigm is predominantly a business model prescribing that you can rent virtual
resources only for the periods of time when they are needed. The owner of the physical infrastructure hosting
the virtual resources can simultaneously let other users rent virtual resources on the same physical infrastructure.
The virtual servers can be co-located on the same physical server and reallocated if virtual machines from a
user negatively affect the computations made by other users. The principle of geographical locality and limited
resources prevent such approaches to be applied for application components deployed on rented servers in the
network or at the edge of the network. Hence, the activities of one application can interfere with the operations
of other applications and have a severe negative impact on the other applications’ performance. Remedy actions
taken by the application management of the affected applications can again affect other applications. Thus, there
is no way to guarantee that application management is effective in this setting, and there is no gurantee that
independent application controllers will converge on a new stable deployment equilibrium of all applications
simultaneously running on the shared infrastructure.

2 Current status

Space does not allow a thorough review of different ideas for automatic application management, and the focus
will be on integrated results from the European Union funded projects as accessible open source solutions. The
project Multi-cloud Execution ware for Large scale Optimised Data Intensive Computing' (MELODIC) devel-
oped a platform where application’s components may be hosted by multiple Cloud providers [2]. It works by
maximizing the application utility function as it is an established way to capture the application owner’s utility
in autonomic computing [3]. The utility function, U(c|6(tx), % (c|0)) € [0, 1], maps a proposed application
configuration, ¢, to a utility value in the unit interval given the measurements of the application execution context,
6(t1), at the current time, tx, and the application’s performance indicators (¢ | @(tx)). The utility function may
trade off different dimensions and conflicting goals like minimizing the deployment cost while maximizing the
application performance. The application is deployed or reconfigured in the configuration that maximises the
utility function.

'https://melodic.cloud/
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The MELODIC platform was extended in the project Modelling and Orchestrating heterogeneous Resources
and Polymorphic applications for Holistic Execution and adaptation of Models In the Cloud”> (MORPHEMIC)
with polymorphic adaptation where application components may support various hardware accelerators, and with
proactive adaptation forecasting the future application execution context, é(tk+h), and regression models for the
performance indicators to calculate the estimated utility value at the future time ¢; [4]. Proactive adaptation
compensates for the time needed to acquire and configure new resources for the application.

These ideas are currently taken forward in the project to develop A meta operating system for brokering
hyper-distributed applications on Cloud computing continuums® (NebulOuS) extending the automatic control to
applications being deployed also onto servers in the network or at the edge. NebulOuS will therefore face the
challenge of multiple applications from different tenants competing for the same restricted resources. Essentially,
it will have a vector of utility values for the n applications controlled, [U;(c;|0,), ..., U,(c,|0,v)]*, where
all values are for the same execution context 6(t;) and the arguments are omitted on the performance indicators
for brevity. It may not be possible to increase the utility value for one application without deteriorating the utility
value of the others, i.e., the utility value vector is a point on the Pareto front of the multi-objective optimization
problem. These problems are typically addressed with evolutionary algorithms [5]. However, such algorithms
must run in a central location, and they have exponential time complexity with growing system size, n, and it
is therefore a limit on how many applications can be co-optimised within the time available for optimization.
Furthermore, the multi-objective optimization implies prioritizing some applications over others, and there is no
global criterium to guide this prioritization.

3 Research challenges

Novel approaches must therefore find scalable solutions to combine the flexible and pro-active application man-
agement offered by individual application utility maximization with multi-tenant use of resource constraint
servers. The suggested way forward is to abandon the centralised planning and rather let each application opti-
mise its own utility by local decisions made by the application components. This resembles the way car drivers
individually makes their route planning maximising the utility of fast arrivals, while constantly taking into con-
sideration the current traffic situation.

Distributed optimisation where multiple agents collaborate on solving a joint optimisation problem are known
to converge for linear and convex problems [6]. The Distributed Constraint Optimization Problem (DCOP) [7] is
an alternative view where the agents control variables and local, multivariate cost functions to jointly minimize
a global objective function, which is the sum of the local cost functions. There are also many algorithms for the
similar case where the cost functions are univariate, and the agent communication is restricted by the communi-
cation network graph [8]. Furthermore, there is huge corpus of research results for achieving collective behaviour
in multi-agent systems [9].

None of these approaches satisfies the need for decentralized algorithms for optimization. There are few
approaches in this direction [10]. Furthermore, the multi-agent solutions available are developed for continuous
decision variables whereas the location and capacity assignment problems in computing are typically discrete.
Only a handful of directions have been proposed for decentralized combinatorial optimization. Pournaras et al.
recently proposed an algorithm for Iterative Economic Planning and Optimized Selections (I-EPOS) [11]. The
problem at hand can also be seen as a grouping of components from multiple tenants on a set of servers, i.e.,
decentralized coalition structure generation [12]. The problem may also be addressed by a decentralized stochas-
tic game of reinforcement learning automata [13]. A challenge in all iterative learning based solutions is the
relatively slow convergence, and one should investigate if it is possible to use actor-critic implementations [14],
or decentralize the Distributed Policy Optimzation (DPO) algorithm [15]. More research is definitely needed to
enable fully decentralized application management.
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