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Abstract—This document explores the concept of runtime
reconfiguration at all hardware and software levels as a means
to improve efficiency, sustainability, and dependability in future
data-centric computing systems. We discuss the motivation be-
hind this approach highlighting opportunities, the state-of-the-
art, and the research challenges that must be addressed to fully
realize its potential. This document serves as an expression of
interest (Eol), providing a vision of future research directions in
the area of Cloud-to-Edge-to-IoT for European Data, shaping the
research agenda for 2025-2027.

I. MOTIVATION

In recent years, the need for adaptable and efficient com-
puting systems has become increasingly apparent due to the
growing complexity and diversity of both compute resources
and application requirements. At the same time, data is being
produced at a much larger scale than before and data move-
ment is clearly one of the dominant performance bottlenecks
in current systems [1]. Reconfigurability or adaptability is
a powerful tool that allows systems to adapt their architec-
ture to specific applications while being aware of the data
locality, thereby improving efficiency and performance [2].
Such reconfiguration mechanisms can be applied over the full
stack of the architecture, from the physical to the application
level, providing a generic means of optimizing data processing,
data locality and communication. By adapting the different
architecture layers to changing application requirements in
a holistic manner, these systems offer several benefits, in-
cluding better hardware utilization, improved performance
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and efficiency, and increased sustainability and dependability,
as systems can not only use the available hardware most
efficiently, but also increase their overall lifetime.

Applying reconfiguration at runtime over the full archi-
tecture stack is defined as full-stack runtime reconfiguration,
allowing to better adapt to dynamic changing application
demands, which is crucial for achieving optimal performance
and energy efficiency in various applications. Reconfigurable
systems can improve performance by dynamically changing
their architecture to suit the application’s requirements, al-
lowing for a more efficient use of resources and reducing
the energy consumption of the system [3], [4]. Furthermore,
runtime reconfiguration can lead to improved sustainability by
allowing systems to adapt to new technologies and standards
without the need for complete hardware replacement [5].
Figure 1 shows an abstract representation of a heterogeneous,
distributed architecture, changing over time by means of
runtime reconfiguration.

II. CURRENT STATUS

Reconfigurability and adaptability are already available
across multiple layers in existing systems. At the physical
layer, traditionally, LUT-based cells are the basis for most
of today’s Field-Programmable Gate Arrays (FPGAs). With
the acquisition of Xilinx by AMD, similar to the purchase
of Altera by Intel in 2015, there is a strong trend for FPGA
fabrics to become part of next-generation CPUs and SoCs,
strengthening the general availability of reconfigurable logic
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Fig. 1. Full-stack reconfiguration, showing an abstract representation of the different architecture layers over time in a distributed system. Different geometrical
forms show different implementations for the respective architectural layers. Different colors represent different components of the distributed application.
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in widely-used computing devices, similar to the GPUs today.
Apart from traditional LUT-based cells, scientists also focus on
new emerging technologies to decrease the inevitable overhead
of reconfigurability, resulting in novel cell architectures, rang-
ing from reconfigurable transistors (RFETS), devices that can
be configured between an n-channel and p-channel behavior
[6] to memristor-based LUT cells [7]. At the processing layer,
runtime reconfiguration of FPGAs or Coarse-Grain Architec-
tures has been demonstrated, further increasing the flexibility
and efficiency of the designs [8], [9]. Large vendors offer today
heterogeneous System-on-Chip (SoC) solutions that combine
the flexibility of embedded or server-grade processors with
closely-coupled reconfigurable accelerators, but their efficient
use still suffers from proprietary development tools, high
design time and the required expert knowledge. In parallel,
reconfigurable processor architectures are developed, recently
driven by the open and extendable RISC-V ISA [10]. On
the communication layer, dataflow computing and data-centric
computing (e.g., processing-in-memory [11]) enable efficient
data processing and communication by focusing on the move-
ment of data and its transformation. Modern operating systems
can adapt themselves to dynamic hardware, taking into account
runtime additions or subtractions of hot-pluggable (or virtu-
alised) RAM, CPU cores, hard disk, network interfaces, etc.
Finally, existing distributed middleware can enable context-
aware computing in the entire IoT-edge-cloud continuum,
adapting the computations deployments and behaviors to their
environment, improving overall system performance, security,
fault-tolerance, or even energy-efficiency.

Despite the advancements previously cited, reconfiguration
has currently limited use. It is often used as a startup feature
but not exploited at runtime, which hinders its full potential.
Additionally, reconfiguration is mostly explicitly controlled
by the application or the user, without the support of the
system’s abstraction layers that could streamline the whole
process and enable a more efficient system operation. Finally,
reconfigurability is mostly handled in an isolated manner on
each layer, rather than being integrated across the entire stack
from application to hardware.

ITI. RESEARCH CHALLENGES

In order to fully exploit the potential of full-stack runtime
reconfiguration, several research challenges must be addressed.
The development of a comprehensive full-stack runtime re-
configuration solution requires the integration of reconfigura-
bility across all architectural levels, from transistors to the
application level. A co-design methodology is essential for
achieving such integration, as it involves the collaboration
between hardware and software designers to create efficient
and adaptable systems. Runtime reconfiguration needs to be
integrated into the high-level, software-centric development
process to reduce time-to-market as well as the required skill
set of the developer team. This implies new domain-specific
languages and tools that account for the overhead in terms of
reconfiguration time, resources and energy and in turn are able
to optimize resource efficiency at the application level.

Dependability aspects, such as fault tolerance and robust-
ness, should be considered when designing reconfigurable
systems, as they contribute to overall system reliability and
longevity. One potential approach to address these chal-
lenges is to develop a reconfigurability-aware middleware
and runtime system, including abstraction layers and auto-
reconfigurability features that can simplify the reconfiguration
process and enable more efficient use of resources. Recon-
figuration would then be applied anytime deemed necessary,
automatically, without having to restart the system or the
application. Additionally, porting and demonstrating the effec-
tiveness of runtime reconfigurability on the application level
is crucial to showcasing the benefits and motivating further
research and adoption of such technology.

IV. CONCLUSION

In conclusion, full-stack runtime reconfiguration holds great
promise for improving efficiency, sustainability, and depend-
ability in modern computing systems. By addressing the
research challenges outlined in this document, it is possible to
create a new generation of adaptable, efficient, and dependable
systems that can respond to the ever-changing demands of
modern applications.
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