

AERO

Accelerated EuRopean clOud

An open source software ecosystem for the EPI hardware

Vision

Enabling the future heterogeneous EU cloud infrastructure

AERO will upbring and optimise all components necessary to achieve out-of-the-box heterogeneous execution of the cloud ecosystem on the EU processor. The outcome will be a set of compilers, runtime systems, operating systems, system software, and auxiliary software deployment services.

Accelerate the adoption of the **EU** cloud ecosystem

AERO will accelerate the adoption of the EU cloud ecosystem via upstreaming to open source projects, communicating and disseminating AERO's results to industry, academia, and standardization bodies.

https://twitter.com/AERO_Project_EU

AERO

Accelerated EuRopean clOud

An open source software ecosystem for the EPI hardware

Goals & Expectations

Strategic Liaisons

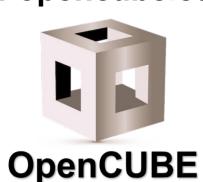
- Liaison with EU initiatives
- Assist standardization efforts

Embracing open source

- Engage open source community
- ☐ Facilitate collaborations & partnerships

Communication & Exploitation

- ☐ Creation of an engaged community
- Organization & coordination of common events
- ☐ Supplement our own communication activities
- ☐ Commercialisation support


https://github.com/AERO-Project-EU/

OpenCUBE - Open-Source Cloud-Based Services on EPI Systems

Ivy Peng¹, Utz-Uwe Haus², Martin Schulz³, Craig Prunty⁴, Pedro Marcuello⁵, Emanuele Danovaro⁶, Mathilde Leuridan⁶, Tiziano Müller², Nina Mujkanovic², Celine Scetbun⁴, Stefano Markidis¹ ¹ KTH ² HPE ³ TU-Munich ⁴ Sipearl ⁵ Semidynamics ⁶ ECMWF

horizon-opencube.eu

ECMWF Coupled Workflow

Plasma Simulation ML Workflow

Molecule Docking Drug Discovery

Objectives and Ambition

Design, implement and validate a full-stack software stack of a European Cloud computing blueprint that will be:

- Deployed on European HW infrastructure
- For industrial & consumer cloud workloads
- For the whole computing continuum
 - From edge to cloud and HPC
 - Targeting the entire continuum
- Enable energy-efficiency at all levels
- Built on industry standard open APIs
- Using open-source components
- Working with standards bodies

Goals

Design and deploy a hardware platform

- Capable of hosting European Processor Initiative (EPI) processor
- Supporting EU developed accelerators
- Based on requirements of representative cloud workloads

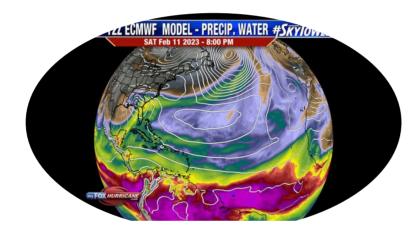
Design and deliver a full software stack

- Enabling cloud servers
- Leveraging EPI-based platforms

Enable system-wide efficiency

- Via heterogeneous data centre architecture
- Deploying eased programmability
- Leveraging heterogeneous resources

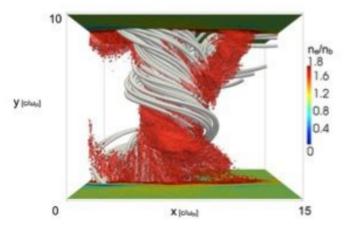
Fully test and validate the deployed stack


- With a diverse set of applications
- Traditional cloud-native and HPC workloads
- Emerging coupled workflows

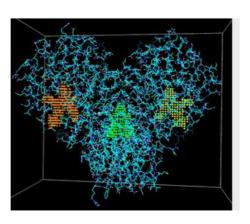
Driver Workloads

OpenCUBE will support cloud-native and complex workflows on the convergence of Cloud and HPC computing

Weather Forecasting


IFS software is a major European resource representing many years of investment by ECMWF[1] and its Member States. The IFS has been developed for over 30 years and it runs operationally, providing time-critical global forecasts several times per day.

[1] P. Bauer, A. Thorpe, and G. Brunet. The quiet revolution of numerical weather prediction. Nature 525, no.7567: 47-55, 2015.


Space Weather & ML

iPIC3D [2] is an open-source C++ and MPI Particle-in-Cell code for the simulation of space plasma. The workflow will run iPIC3D simulation on the HPC partition with ML classification of simulation results on the cloud partition

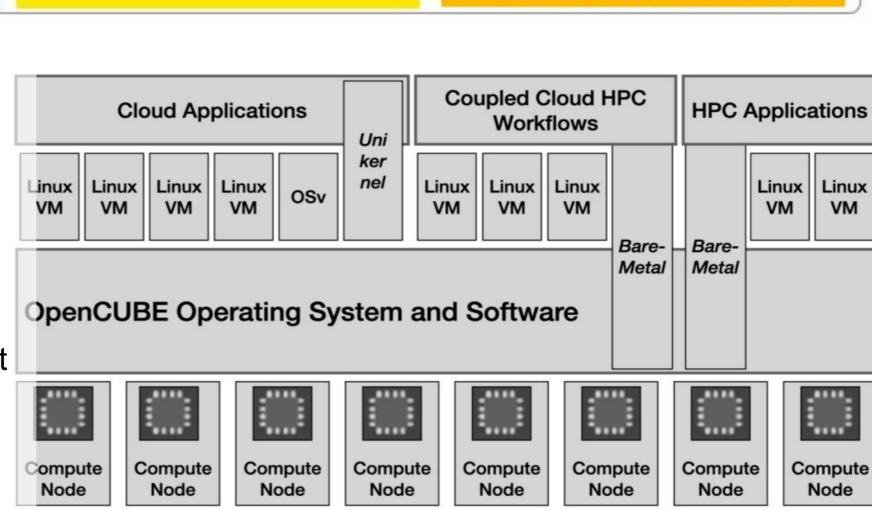
Markidis, S., & Lapenta, G. (2010). Multi-scale simulations of plasma with iPIC3D. Mathematics and Computers in Simulation, 80(7), 1509-1519.

High-Throughput Molecular Docking for Drug Discovery AutoDock software[3], one of the most used software for molecular docking will be used to test on widely used databases, such as DrugBank database, Enamine database, ZINC15, and Cambridge.

[3] Goodsell, D. S., Sanner, M. F., Olson, A. J., & Forli, S. (2021). The AutoDock suite at 30. Protein Science, 30(1), 31-43.

Methodology

ECMWF weather forecast


OpenCUBE will provide the first full cloud stack on heterogeneous data center built on

ECMWF meteorological processing

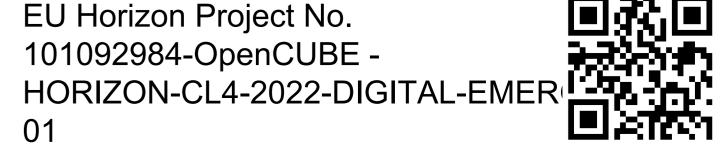
AI/ML for Space Weather

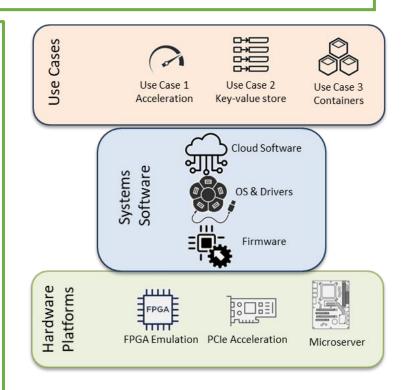
Industry-standard Cloud App

- Sipearl Rhea CPU
- Semidynamics RISC-V **EPAC**
- High performance Ethernet
- Heterogeneous main memory
- Fabric-attached memory

Roadmap and Future work

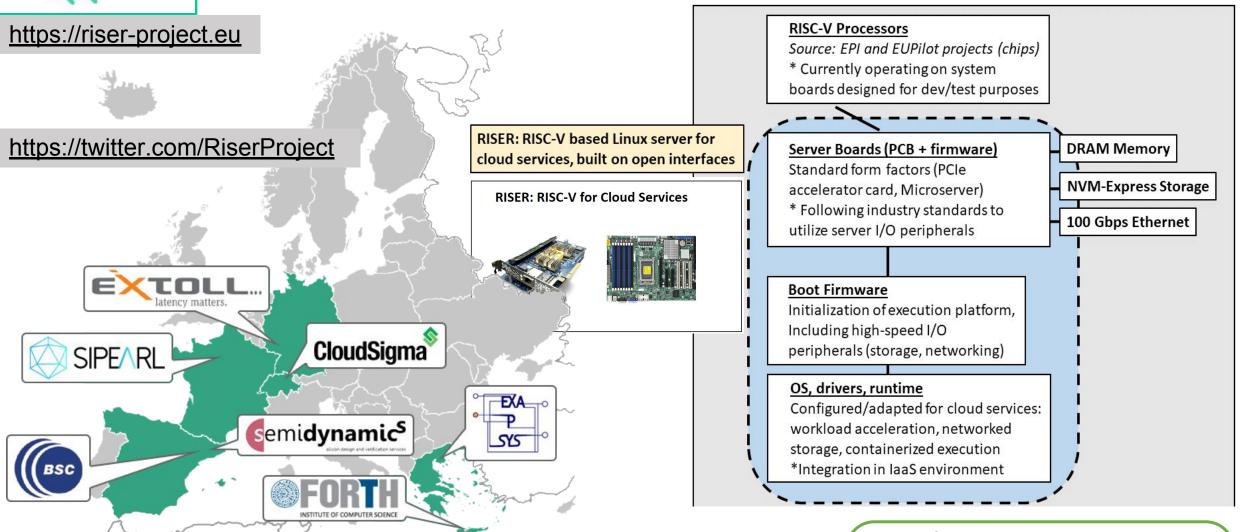
- Will design and develop the prototype hardware infrastructure based on Sipearl CPU and Semidynamics accelerator
- Will design and develop an open-source software stack, including OS, system software, and middleware for cloud services on the HW infrastructure
- Will perform validation and evaluation of OpenCUBE prototype implementation with the driver applications
- Will establish and maintain strong interaction with other European and International R&I activities to provide bidirectional feedback between them and the OpenCUBE project




RISC-V for Cloud Services

https://riser-project.eu

RISER will develop the first all-European RISC-V cloud server infrastructure, significantly enhancing Europe's open strategic autonomy.


- validate open-source designs for standardized Develop form-factor system platforms
 - PCIe Acceleration Card, Microserver (Blade)
 - Use cases: acceleration, networked storage, containerized execution
- Enabling the path towards a <u>European-based cloud infrastructure</u>
 - The first Cloud architecture using RISC-V processor technology being developed within the EPI and EUPILOT projects
 - Key technologies:
 - RISC-V processors, PCI-Express/CXL, Cache-coherent Chip-to-Chip links
- Open hardware interfaces
 - Expand the interface possibilities of EPI/EUPILOT processors:
 - High-speed networking and storage capabilities
 - Essential support for cloud applications and services deployment

Call: Open source for cloud-based services, GA Nr: 101092993 (HaDEA)

Wiser Consortium Skills & Contributions

Integrated all-European Hardware and Open-Source Software for Cloud Services and Applications

Contact: Dr. Manolis Marazakis **Organization:** FORTH (Greece)

Email: maraz@ics.forth.gr

Goals and expectations

Vitamin-V aims to develop further RISC-V ...

- 1) Open-source virtual environments
 - QEMU, Gem5, cloud-FPGA
- 2) Open software validation suites
 - Software bugs, Malicious code
- 3) Open-source cloud hardware-software stacks

Compiler and tool-chain: LLVM, JVM, Python, ...

VMMs and container suites: VOSySmonitor, KVM, QEMU, Docker,

RustVMM and Kata containers

Cloud management middleware: OpenStack, Kubernetes

AI & BigData applications: Apache Spark and Google Tensorflow.

Vision

- Hardware will be as good as the software that runs on top of it.
- Embracing RISC-V and Open-Source:
 - Collaborative effort beyond the timespan of the project
 - Comparable to standardization
 - Higher-impact of project's results
- Computing continuum
 - Cloud (Vitamin-V), HPC (EPI, EUPILOT, other), Automotive (SELENE, KDT JU calls)
 - Heterogeneous IoT-Edge-Cloud continuum convergence.