Federated Architectures for Distributed Intelligence

Way Forward

Concertation and Consultation on Computing Continuum
Concertation Meeting
Brussels
10th May 2023
Human-device interfaces
Hardware accelerators & low powered devices
Federated and distributed intelligence
VNFs and 5G edge processing
DLT enabled data management and cybersecurity

Parameter based pooling – Function as a Service
Abstraction layers for heterogeneous/mixed resources
Cognitive and automated orchestration platforms
Cloud based hardware/software acceleration & optimisation
Multicloud application development interfaces and tools
D2.6 Policy Guidance and Mapping
6 SRIAs + > 590 Topics

1. **SHARED DIGITAL FUTURES**
 - Impact of Data Act, AI Act, Cyber Resilience Act, Digital Services Package on NGIoT

2. **A FEDERATED FUTURE**
 - Highlights and trends across major SRIAs

3. **SRIA DATABASE**
 - >650 abstracted and categorised topics in csv on Zenodo

Additional Links:
<table>
<thead>
<tr>
<th>Human Interface</th>
<th>FAR EDGE</th>
<th>NEAR EDGE</th>
<th>INFRA STRUCTURE</th>
<th>DATA SPACES</th>
<th>ALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Networld Europe</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>127</td>
<td>2</td>
</tr>
<tr>
<td>AIOTI</td>
<td>29</td>
<td>67</td>
<td>31</td>
<td>23</td>
<td>15</td>
</tr>
<tr>
<td>ECS</td>
<td>54</td>
<td>20</td>
<td>39</td>
<td>33</td>
<td>10</td>
</tr>
<tr>
<td>ADRA</td>
<td>23</td>
<td>12</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>EFFRA</td>
<td>8</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Data, Edge & Cloud</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>10</td>
<td>3</td>
</tr>
</tbody>
</table>
Key themes and trends

Overall observations

- Federated and heterogeneous systems
- Trust and Performance
- Distributed intelligence and Federated Learning

Key themes
Key themes and trends

Overall observations

- Federated and heterogenous systems
- Trust and Performance
- Distributed intelligence and Federated Learning

Key themes

- Reliability: 75
- Trustworthy AI: 72
- Interoperability: 70
- Market: 49
- Energy/Power: 37
- Components: 35
- Foundational Tech: 34
- Contextual IoT: 30
WAY FORWARD
Federated Architecture for Distributed Intelligence

Tanya Suárez
BluSpecs
EU-IoT

Panagiotis Sarigiannidis
U. Western Macedonia
TERMINET

Carlos Palau
Technical University Valencia
AerOS

Akis Kourtis
Demokratis
OASEES
NGIoT 2020-2023
IoT architecture through software-defined networking as an uniform layer, based on advanced AI and federated learning
Agriculture, Energy, Health, Supply Chain

MetaOS 2022-2025
Platform-agnostic, zero-touch MetaOS that follows a collaborative IoT-Edge-Cloud architecture supporting flexible deployments
Agriculture, Energy, Social, Ports, Manufacturing

Swarm AI 2023-2026
Fully open-source, decentralized, and secure Swarm programmability framework for edge devices and leveraging various AI/ML accelerators
Health, Energy, Manufacturing
WAY FORWARD
Federated Architecture for Distributed Intelligence

Tanya Suárez
BluSpecs
EU-IoT

Panagiotis Sarigiannidis
U. Western Macedonia
TERMINET

Carlos Palau
Technical University Valencia
AerOS

Akis Kourtis
Demokratis
OASEES
The Claridge – Brussels, Belgium | 10-11 May 2023

Concertation and Consultation on Computing Continuum: From Cloud to Edge to IoT

Organized by: Open Continuum | Supported by: Unlock CEI and SWForum
TERMINET Reference Architecture

- **Microservice-oriented** application deployment across edges and the continuum
- **Resource Orchestration Components**
 - Vertical and Dynamic Resource Orchestrator
- **Storage and Streaming Analytics Components**
 - Storage and Streaming Analytics Component
- **Security and Privacy Components**
 - Attestation Gateway
- **Application Components**
 - Federated Learning Framework for privacy-preserving ML model training
 - Dashboard

Interoperability through multi-access distributed edge networks supported by novel orchestration schemes

Concertation and Consultation on Computing Continuum: From Cloud to Edge to IoT. Organized by: Open Continuum

© EUCouldEdgeIoT.eu
Federated Approach – Privacy by Design
TERMINET Project Identity & Consortium

TERMINET aims at providing a novel **next generation reference architecture** based on cutting-edge technologies such as Software Defined Networking (SDN), multiple-access edge computing (MEC), and virtualisation for next generation IoT. In addition, TERMINET introduces **new, intelligent IoT devices** for low-latency, market-oriented use cases. Finally, TERMINET intends to bring more **efficient and accurate decisions to the point of interest to better serve the final user**.

TERMINET USE CASES

1. UC #1: User-Centric Devices in Smart Farming
2. UC #2: Pathway of Personalized Healthcare
3. UC #3: Smart, Sustainable and Efficient Buildings
4. UC #4: Prediction and Forecasting System for Optimizing the Supply Chain in Dairy Products
5. UC #5: Group Training Surgery Using VR enabled IoT Technologies
6. UC #6: Mixed Reality and ML Supported Maintenance and Fault Prediction of IoT based Critical Infrastructure
EUCloudEdgeIoT.eu is supported by the Open Continuum and Unlock CEI and both received funding from the European Union’s Horizon Europe Research and Innovation Programme under the Grant Agreement numbers 101070030 and 101070571.

psarigiannidis@uowm.gr

https://terminet-h2020.eu/

https://www.linkedin.com/company/terminet/

Thank you for your kind attention!

The Claridge – Brussels, Belgium | 10–11 May 2023

Concertation and Consultation on Computing Continuum: From Cloud to Edge to IoT

Organized by: Open Continuum | Supported by Unlock CEI and SWForum
This Communication is part of a project that has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement N°101069732

DISTRIBUTED INTELLIGENCE ARCHITECTURE IN aerOS

EU CEI Concertation Meeting
Brussels, May 10th, 2023
Prof. Carlos E. Palau (UPV) – Project Coordinator
aerOS creates a network-compute fabric, on top of which reusable distributed IoT applications can be deployed on aerOS service fabric following an AI-driven service placement, consuming the IoT data, that are discovered in the aerOS data fabric.

- Service deployment and management following cloud-native principles (K8s, Helm charts, KubeEdge and beyond).
- Federated orchestration in multi-stakeholder environments
- Event mesh and serverless to connect services and apply AI for the orchestration in the continuum.
- Frugal AI/ML techniques for managing services lifecycle
FEDERATED ORCHESTRATION IN aerOS

- aerOS continuum is composed of Infrastructure Elements in various domains.

Registry of underlying IEs and peers IE.

Every IE contains a Federated Context Broker (FIWARE ORION)

The far-end IEs directly connect to IoT devices

How the continuum is orchestrated:

An application must be deployed in the continuum.

© EUCouldEdgeIoT.eu
DATA FABRIC and EVENT MESH

- aerOS proposes an innovative way of managing among that can reside anywhere across the continuum.

 - Data Fabric forming a data continuum allowing distributed intelligence.

- Service mesh principles (e.g., Istio) enhanced with Dynamic structure (Event mesh).

- Customized AI models via OpenFAAS, serverless functions.
This Communication is part of a project that has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement N°101069732

Prof. Carlos E. Palau

+34 96 387 73 01

cpalau@dcom.upv.es

www.satrd.es

THANK YOU!

FOLLOW US!

https://aeros-project.eu

@AerosProject

aerOS Project

/aeros-project

/aerosproject

/aerosproject
Objectives

Obj 1 • Design a decentralized, agile and secure architecture for collaborative smart nodes at the edge backed by the Decentralized Autonomous Organization (DAO) paradigm integration.

Obj 2 • Native device support by integrating Self Sovereign Identity (SSI) for a portable digital identity. OASEES Decentralized device identity will be a new class of identifier that fulfils all four requirements: persistence, global resolvability, cryptographic verifiability, and decentralization.

Obj 3 • Build rapid development kits (RDKs) for an open programmable framework across different smart edge nodes, while incorporating efficient cloud-to-edge continuum intelligence across heterogeneous target environments.

Obj 4 • Demonstrate the framework and programmability toolkit in a set of different vertical use cases and evaluate the benefits across different sectors.

Obj 5 • Maximize the impact of the OASEES results. Foster the creation of an open-source community around the OASEES solution, engaging a diverse set of stakeholders.
x-Sensors/Devices

01: SSI: DIDs, VCs

02: Create their DAO - Organize through it

03: Choose/Define their AI model/optimization

04: Use the preferred Accelerator

x-Networks

x-ML-Algorithms

05a: Automated Decision Making/HITL

05b: Optimize & Collect KPIs

x-Specialist

SDK
WAY FORWARD
Federated Architecture for Distributed Intelligence

Tanya Suárez
BluSpecs
EU-IoT

Panagiotis Sarigiannidis
U. Western Macedonia
TERMINET

Carlos Palau
Technical University Valencia
AerOS

Akis Kourtis
Demokratis
OASEES