Towards an Open Heterogeneous Smart Cloud

Josep Lluís Berral, Aaron Call, Ramon Canal
Barcelona Supercomputing Center, Universitat Politècnica de Catalunya

The Claridge – Brussels, Belgium | 10-11 May 2023

Concertation and Consultation on Computing Continuum: From Cloud to Edge to IoT

Organized by: Open Continuum | Supported by Unlock CEI and SWForum
Open Heterogeneous Smart Cloud

Cloud-Edge Scenarios
• Pervasive Computing (IoT, Wearables, Edge)
• Big Data (Cloud and Analytics)
• Artificial Intelligence (Machine Learning applications)

Current Status
• Growth on data/users (sources, storage, transmission, consumers, clients)
• Scalability, reliability and adaptivity vs. Distributed and heterogeneous

Challenges
• Development & deployment at Cloud-Edge on trustworthy and open HW
• Management of hyper-distributed resources
• Migration of AI/Analytics near to data
Aspects to Target

1. Cloud-Edge into Open Architectures
 - Open access to underlying technologies
 - Transparent design
 - Transparent management

2. Heterogeneous Resources Integration
 - Impact on energy, availability and trust
 - Use of accelerators
 - No “one fits all” policy

3. AI in the Orchestration Cycle
 - Automation of management
 - Hyper-distribution
 - Federated infrastructures

EPI & EU technological sovereignty
Sustainable competition
Enhance efficiency
Concertation and Consultation on Computing Continuum: From Cloud to Edge to IoT

The Claridge – Brussels, Belgium | 10-11 May 2023

Organized by: Open Continuum | Supported by Unlock CEI and SWForum
Full-stack Runtime Reconfiguration for Efficient Data Processing

Jens Hagemeyer – Bielefeld University
Motivation (Why Full-stack Runtime Reconfiguration?)

- Reconfigurability is a powerful tool as it allows to
 - adapt the architecture to the application
 - be applied from physical to application level
 - be a generic tool for optimizing data processing, communication, data movement, etc.
 - use existing research
 - adapt at run-time to changing requirements in application
Status (Run-time reconfiguration is already there)

Middleware layer
- Context-aware computing in ubiquitous/pervasive Computing

System layer
- Management level
- OS and deployment support

Communication layer
- Dataflow computing
- Data-centric computing

Processing layer:
- FPGAs and Coarse Grain Architectures
- Reconfigurable Processors

Physical layer:
- RFETs (devices that can be configured between an n-channel and p-channel behavior)
- Memristor-based LUT cells
Challenges (How to get Full-stack Runtime Reconfiguration?)

- Develop full-stack run-time reconfiguration
 - Foster run-time reconfigurability on all architectural levels – transistor to application
 - Employ co-design methodology for run-time reconfigurability
 - Include dependability aspects
 - Develop a “run-time reconfigurability aware” middleware and run-time aware, including abstraction layers and auto-reconfigurability features
 - Port and demonstrate on application level

- Resulting in
 - better hardware utilization
 - better fit to changing application demands at runtime
 - improved performance and efficiency
 - improved sustainability and dependability
Contacts

Mario Porrmann, Osnabrück University, Germany, mario.porrmann@uni-osnabrueck.de

Marcelo Pasin, University of Neuchâtel, Switzerland, marcelo.pasin@unine.ch

Pedro Trancoso, Chalmers University of Technology, Sweden, ppedro@chalmers.se

Jens Hagemeyer, Bielefeld University, Germany, jhagemey@techfak.uni-bielefeld.de

The Claridge – Brussels, Belgium | 10-11 May 2023

Concertation and Consultation on Computing Continuum: From Cloud to Edge to IoT

Organized by: Open Continuum | Supported by Unlock CEI and SWForum
Towards next generation digital infrastructures to contribute to a more resilient and sovereign European economy

Isabelle Chrisment – Inria
DIGITAL INFRASTRUCTURE
UBIQUITOUS AND CONSTANTLY EVOLVING

Concertation and Consultation on Computing Continuum: From Cloud to Edge to IoT. Organized by: Open Continuum

© EUCouldEdgeIoT.eu
RESEARCH CHALLENGES

• How to manage Compute/Network/Storage resources?
 • High volatility, heterogeneity, constrained resources (embedded systems, CPS, ...),
 • Multi tenant: computing continuum delivered by multiple operators.

• How to design new storage systems for sharing data?
 • Multiple failures at network and node level,
 • Untrusted nodes and data protection.

• How to address energy consumption and environmental impact?
 • Tradeoff between energy consumption and resilience,
 • Use of renewable energy / intermittent energy (impacting the resilience).

• How to adapt security mechanisms?
 • Specific security threats to cloud paradigms (SaaS, PaaS, IaaS),
 • Security policies for more complex and dynamic environments (inconsistencies between tenants or administrators).
DIGITAL INFRASTRUCTURES@INRIA

EUROPE

• SLICES–RI (Research Infrastructure) in the 2021 ESFRI Roadmap
 • Scientific Large-scale Infrastructure for Computing/Communication Experimental Studies
 • SLICES–PP (Preparatory Phase): Inria coordinator

NATIONAL

• PEPR (Priority Research Programs and Equipments) CLOUD
 • 56 M€, Inria co-leader, 7 years starting in September 2023

• OTPAAS – Delivering an edge software stack for the industry
 • 56 M€, Inria partner, October 2021 – 2024

INRIA Challenges (ambitious research projects)

• Inria–OVHCloud: End-to-end eco-design of a cloud to reduce its environmental impact
• Inria–Qarnot Computing: PUshing Low-carbon Services towards the Edge
• Inria–Hive: Large Scale Secure and Reliable Peer-to-Peer Cloud Storage
Adrien Lebre: adrien.lebre@inria.fr
Frédéric Desprez: frederic.desprez@inria.fr
Isabelle Chrisment: isabelle.chrisment@inria.fr
Seamless X-by-Construction Methods towards scalable & reliable Cloud-Edge-IoT Computing

Jürgen Becker – Karlsruhe Institute of Technology (KIT)
Motivation and status

- **Benefits of a cloud-edge continuum**: Energy efficiency, improved customer experience, intellectual property protection, central/decentral trade-offs …

- **However, integrating safety-critical nodes** into such a continuum is a challenging (real-time) task:
 - Inherently dynamic behaviour of applications
 - Fast integration cycles + over-the-air updates
 - Extreme platform heterogeneity + adaptivity

- **Future autonomous systems (e.g. in the automotive domain)** depend on:
 - A scalable and **reliable cloud continuum** (esp. from a safety/real-time perspective)
 - **First-class support for heterogeneous hardware platforms** (incl. AI accelerators)
 - Automatizable on-demand **X-by-Construction integration** (incl. Validation & Deployment)
Research challenges

• How can a reliable federation of cloud ecosystems with support for heavily heterogeneous hardware platforms be realised?

• **Promising solution:** The novel *X-by-Construction (XbC)* paradigm
 • **Key idea:** Automatic generation of system implementations with guaranteed properties
 • Currently limited to the design phase ⇒ ill-suited for highly adaptive systems
 • **XbC Applicability to dynamic systems** is a crucial research question
European Cloud Processor

Roger Espasa, Founder & CEO
Problem: No European Cloud Processors

- ALL cloud architectures (X86 and ARM) are non-European
- ALL cloud processors are non-European
- Hence
 - Concerns on security and sovereignty
 - Innovation happening elsewhere
 - Economic opportunity loss

- Solution(s)
 - Adopt an open architecture (RISC-V) for the long term
 - Design a European processor for the cloud continuum
The R&D Challenges

- Research, definition and design of a high-frequency, very wide (12-wide) out-of-order core, with the following key attributes:
 - At least 3 memory operations issued per cycle
 - Native hardware support for virtual machines through a hypervisor layer
 - Extensive protection of processor internal storage through ECC
 - Support for cryptographic instructions
 - Support for security enclaves, either through separate memory spaces or a similar technology
 - Cache coherent
 - Support for efficient synchronization across cores
 - Support for multithreading
 - New forms of energy efficiency, energy allocation and energy rationing
 - Resistant to side-channel attacks

- Research, definition and design of a high-performance “uncore” tailored for the cloud, capable of:
 - Supporting 16 to 128 of the above defined core
 - Supporting large second level and last level caches
 - Advanced prefetching techniques
 - Novel resource partitioning algorithms to split the hardware resources to different virtual machines following an administrator-set policy
 - Memory encryption techniques
 - Advanced network-on-chip
 - Advanced reliability techniques, for all “uncore” components
 - Energy and power controller techniques to manage the cores and the “uncore”
 - Secure boot technologies, preferably open-source, for maximum public scrutiny
 - High bandwidth off-ide interfaces, specially to remote memory (such as CXL memory)
Thank you
UPV–SRIPAS

Expression of Interest on future visions and research directions 2025-27 in the area of Cloud-to-Edge-to-IoT for European Data

Prof. Carlos E. Palau – UPV

The Claridge – Brussels, Belgium | 10-11 May 2023

Concertation and Consultation on Computing Continuum:
From Cloud to Edge to IoT

Organized by: Open Continuum | Supported by: Unlock CIB and SWForum
What we see in the current status

- There is a lack of coverage within the range of computing devices in the continuum. Non-Linux equipment, IoT-resource-constrained elements, FPGAs and others are often disregarded, thus the continuum does not stretch well to those kinds of devices.

- There is no proper open source, end-to-end service pipelines that abstract the complexity and heterogeneity of the underlying equipment.

- The management of the lowest layers of the continuum is not solved at all, with connectivity and interoperability issues even at the level of research actions.

- Privacy and security are not tackled homogeneously across the entire continuum, and all stages of applications’ lifecycle and may require a holistic approach from different clusters (i.e. CL4 and CL3).

- The lack of formal structure of the continuum hinders potential of organization and standardization.
Research challenges and mid-term priorities

- **Security, privacy and data spaces** for the continuum.
- Advanced (frugal, explainable, trustworthy) AI mechanisms for improving continuum performance: robustness, autonomy, traceability, governance.
- Underlying **network automation**, IP-abstraction and connectivity by service names (eBPF, kernel technologies...).
- Achievement of a true AI-based cognitive mesh with ambient intelligence.
- **Miniaturization** of workloads’ containers and packages.
- **Explainable offloading and orchestration**, involving context-aware self-configuration of workloads (from day-0 to day-2).
- Business models for effective **federation** of resource sharing in multi-stakeholder scenarios.

The next calls in the programme must target long-term goals:

- **European values**: GDPR natively and lightweight DLT to govern all continuum transactions (sovereign continuum).
- **Europe’s own technology must stand out**: Alternative CPU architectures completely embedded in the continuum, prominently RISC-V.
- **True tactile deployments**: Reconfiguration of the continuum in runtime in milliseconds time.
- **Metaverse of the continuum**, including VR simulation and IoT-powered ubiquitous data. Self-organizing networks with automatic formation, maintenance, and adaptation to ensure optimal data flow, load balancing, and resource allocation in complex, distributed computing environments.
Prof. Carlos E. Palau (UPV) – cpalau@dcom.upv.es
Dr. Ignacio Lacalle (UPV) – iglaub@upv.es
Prof. Maria Ganzha (SRIPAS) – Maria.Ganzha@ibspan.waw.pl
Dr. Katarzyna Wasielewska-Michniewska (SRIPAS) – wasielk@ibspan.waw.pl